

Case report

Showcase to illustrate how the web-server pLoc_Deep-mAnimal is working

Kuo-Chen Chou

¹ Gordon Life Science Institute, Boston, Massachusetts 02478, United States of America;

*Corresponding Author: : Kuo-Chen Chou, Gordon Life Science Institute, Boston, Massachusetts, 02478, United States of America; Email- kcchou@gordonlifescience.org or kcchou38@gmail.com

Citation: Showcase to illustrate how the web-server pLoc_Deep-mAnimal is working. Am J of Viro and Dis. 2020; 2(2): 01-02.

Submitted: 22 May 2020; Approved: 27 May 2020; Published: 28 May 2020

Short Title: Showcase for pLoc_Deep-mAnimal

In 2020, a very powerful web-server predictor has been established for identifying the subcellular localization of animal proteins based on the sequence information alone [1] in which a same protein may occur or move between two or more location sites and hence needs to be marked with the multi-label approach [2].

The web-server predictor is called "pLoc_Deep-mAnimal", where "Deep" means the web-server has been further improved by the "Deep Learning" technique [3-6], and "m" means the capacity able to deal with the multi-label systems. To learn how the web-server is working, please do the following.

Step 1. Click the link at http://www.jci-bioinfo.cn/pLoc_Deep-mAnimal/, the top page of the pLoc_bal-mAnimal web-server will appear on your computer screen, as shown in Fig.1. Click on the Read Me button to see a brief introduction about the predictor.

Figure 1

pLoc_Deep-mAnimal: predict subcellular localization of animal proteins by deep learning <u>Read Me</u> <u>Supporting information</u> <u>Citation</u>
Enter query sequences
Enter the sequences of query proteins in FASTA format (Example): the number of proteins is limited at 10 or less for each submission.
Or, upload a file for batch prediction Enter your e-mail address and upload the batch input file (<u>Batch-example</u>). The predicted result will be sent to you by e-mail once completed; it usually takes 1 minute or so for each protein sequence Upload file: <u>Browse</u> Your Email: <u>Batch submit</u> Cancel

Step 2. Either type or copy/paste the sequences of query human proteins into the input box at the center of Fig.1. The input sequence should be in the FASTA format. For the examples of sequences in FASTA format, click the Example button right above the input box.

Step 3. Click on the Submit button to see the predicted result. For instance, if you use the four protein sequences in the Example window as the input, after 10 seconds or so, you will see a new screen (Fig.2) occurring. On its upper part are listed the names of the subcellular locations

Cite this article: Showcase to illustrate how the web-server pLoc_Deep-mAnimal is working. Am J of Viro and Dis. 2020; 2(1): 01-02.

numbered from (1) to (20) covered by the current predictor. On its lower part are the predicted results: the query protein Q60736 of example-1 corresponds to "1," meaning it belonging to "Acrosome" only; the query protein O60680 of example-2 corresponds to "6, 16" meaning it belonging to "Cytoplasm" and "Nucleus"; the query protein Q60714 of example-3 corresponds to "3, 6, 18", meaning it belonging to "Cell Membrane", "Cytoplasm", and "Plasma membrane". All these results are perfectly consistent with experimental observations. **Figure 2**

1) Acrosome	(2) Cell cortex	(3) Cell membrane
4) Centriole	(5) Centrosome	(6) Cytoplasm
(7) Cytoskeleton	(8) Endoplasmic reticulum	(9) Endosome
(10) Extracellular space	(11) Golgi apparatus	(12) Lysosome
(13) Melanosome	(14) Microsome	(15) Mitochondrion
(16) Nucleus	(17) Peroxisome	(18) Plasma membran
(19) Spindle	(20) Synapse	
Predicted res	ults	
Protein ID	Subcellular location	or locations
Protein ID >Q60736	Subcellular location	or locations
		or locations

Step 4. As shown on the lower panel of Fig.2, you may also choose the batch prediction by entering your e-mail address and your desired batch input file (in FASTA format of course) via the Browse button. To see the sample of batch input file, click on the button Batch-example. After clicking the button Batch-submit, you will see "Your batch job is under computation; once the results are available, you will be notified by e-mail."

Step 5. Click on the Citation button to find the papers that have played the key role in developing the current predictor of pLoc_Deep-mAnimal.

Step 6. Click the Supporting Information button to download the Supporting Informations mentioned in this paper.

REFERENCES

[1] Y.T. Shao, K.C. Chou, pLoc_Deep-mAnimal: A Novel Deep CNN-BLSTM Network to Predict Subcellular Localization of Animal Proteins, Natural Science, 12 (2020) 281-291.

[2] K.C. Chou, Advance in predicting subcellular localization of multi-label proteins and its implication for developing multi-target drugs, Current Medicinal Chemistry 26 (2019) 4918-4943.

[3] A. Maxwell, R. Li, B. Yang, H. Weng, A. Ou, H. Hong, Z. Zhou, P. Gong, C. Zhang, Deep learning architectures for multi-label classification of intelligent health risk prediction., Bmc Bioinformatics, 18 (2017) 523.

[4] S. Khan, M. Khan, N. Iqbal, T. Hussain, S.A. Khan, K.C. Chou, A Two-Level Computation Model Based on Deep Learning Algorithm for Identification of

piRNA and Their Functions via Chou's 5-Steps Rule (2019) https://doi.org/10.1007/s10989-019-09887-3, Human Genetics (2019).

[5] I. Nazari, M. Tahir, H. Tayari, K.T. Chong, iN6-Methyl (5-step): Identifying RNA N6-methyladenosine sites using deep learning mode via Chou's 5-step rules and Chou's general PseKNC, Chemometrics and Intelligent Laboratory Systems (CHEMOLAB), htpps://doi.org/10.1016/j.chemolab.2019.103811 (2019).

[6] Z.U. Khan, F. Ali, I.A. Khan, Y. Hussain, D. Pi, iRSpot-SPI: Deep learning-based recombination spots prediction by incorporating secondary sequence information coupled with physio-chemical properties via Chou's 5-step rule and pseudo components, Chemometrics and Intelligent Laboratory Systems (CHEMOLAB), 189 (2019) 169-180.

Cite this article: Showcase to illustrate how the web-server pLoc_Deep-mAnimal is working. Am J of Viro and Dis. 2020; 2(1): 01-02.